f(x)=6x
g(x)=x6
f(g(x))=f(x6)=6(x6)=6x/6=x
g(f(x))=g(6x)=6x6=x
f(x)=5x−6
g(x)=x+56
f(g(x))=f(x+56)=5(x+56)−6=5x+256−6=5x+256−6×66=5x+256−366=5x−116
g(f(x))=g(5x−6)=5x−6+56=5x−16
f(x)=3x
To find f−1(x):
1) Replace f(x) with y.
2) Interachange x and y.
3) Solve for y.
4) Replace y with f−1(x).
1) y=3x
2) x=3y
3) y=x3
4) f−1(x)=x3
f(x)=7x+2
y=7x+2
x=7y+2
7y=x−2
y=x−27
f−1(x)=x−27
f(x)=x3−2
y=x3−2
x=y3−2
y3=x+2
y=3√x+2
f−1(x)=3√x+2
f(x)=19x−1
y=19x−1
x=19y−1
19y=x+1
y=19x+1
f−1(x)=19x+1
f(x)=5x+6x−1
y=5x+6x−1
x=5y+6y−1
x(y−1)=5y+6
xy−x=5y+6
5y=xy−x−6
5y−xy=−x−6
y(5−x)=−x−6
y=−x−65−x
f−1(x)=−x−65−x